Additive Manufacturing of Injection Mold for Fabricating NdFeB Magnets

Tejesh Dube¹, Xuehui Yang¹, Jian Zhang¹, Sugrim Sagar¹, Hyunhee Choi², Yeon-Gil Jung², Dan

Daehyun Koo³, Jing Zhang^{1*}

1. Department of Mechanical and Energy Engineering, Indiana University - Purdue University

Indianapolis, USA

2 Department of Materials Convergence and System Engineering, Changwon National

University, Changwon, Republic of Korea

3. Department of Engineering Technology, Indiana University - Purdue University Indianapolis,

USA

*Corresponding author: jz29@iupui.edu

Abstract

This work presents the fabrication of NdFeB based magnets using a novel method which combines

powder injection and 3D printing technique. Using customized 3D printed plastic molds, we

demonstrate efficiently manufacturing of magnets with various shapes. The work provides a cost-

effective means to fabricate complex shaped magnetic components.

1. Introduction

Neodymium Iron Boron magnets, generally referred to as neodymium magnets or NdFeB magnets

were first developed by General Motors and Sumitomo Special Metals in 1984 [3]. Since then,

they are the most widely used rare earth magnets. NdFeB magnets are a type of permanent magnet

made from an alloy of neodymium, iron, and boron. They are also the strongest class of magnets

which are available commercially [4]. Although neodymium is a rare earth metal, its presence is

significant in the earth's crust. Neodymium shows paramagnetism at room temperature and when

cooled below -253 °C displays antiferromagnetism [5]. Compounds of neodymium with transition

670